Theorem 1 (Schröder-Bernstein Theorem). Suppose that $f: A \rightarrow B$ and $g: B \rightarrow$ A are one - to - one maps. Then there is a bijection between A and B.
Proof. Define the sets A_{n} and B_{n} as follows:

$$
\begin{array}{cc}
A_{0}=A, & B_{0}=B, \\
A_{n+1}=g \circ f\left(A_{n}\right), & B_{n+1}=f \circ g\left(B_{n}\right) .
\end{array}
$$

By induction on n we have that:

$$
A_{n} \supset g\left(B_{n}\right) \supset A_{n+1}
$$

and

$$
B_{n} \supset f\left(A_{n}\right) \supset B_{n+1}
$$

thus giving us the chain of incusions:

$$
A_{0} \supset g\left(B_{0}\right) \supset A_{1} \supset g\left(B_{1}\right) \supset A_{2} \supset \cdots,
$$

and

$$
B_{0} \supset f\left(A_{0}\right) \supset B_{1} \supset f\left(A_{1}\right) \supset B_{2} \supset \cdots
$$

Define the sets A_{∞} and B_{∞} by:

$$
A_{\infty}=\bigcap_{n=0}^{\infty} A_{n} \text { and } B_{\infty}=\bigcap_{n=0}^{\infty} B_{n}
$$

This gives that

$$
B_{\infty}=\bigcap_{n=0}^{\infty} B_{n} \supset \bigcap_{n=0}^{\infty} f\left(A_{n}\right) \supset \bigcap_{n=0}^{\infty} B_{n+1}=B_{\infty}
$$

Using the fact that f is $1-1$ we get:

$$
f\left(A_{\infty}\right)=f\left(\bigcap_{n=0}^{\infty} A_{n}\right)=\bigcap_{n=0}^{\infty} f\left(A_{n}\right)=\bigcap_{n=0}^{\infty} B_{n}=B_{\infty} .
$$

Thus we have that f maps A_{∞} onto B_{∞}, which means that f is a bijection between A_{∞} and B_{∞}. Now we write A and B as a disjoint union as follows:

$$
\begin{aligned}
A & =A_{\infty} \cup\left[A_{0} \backslash g\left(B_{0}\right)\right] \cup\left[g\left(B_{0}\right) \backslash A_{1}\right] \cup\left[A_{1} \backslash g\left(B_{1}\right)\right] \cup\left[g\left(B_{1}\right) \backslash A_{2}\right] \cup \cdots, \\
B & =B_{\infty} \cup\left[B_{0} \backslash f\left(A_{0}\right)\right] \cup\left[f\left(A_{0}\right) \backslash B_{1}\right] \cup\left[B_{1} \backslash f\left(A_{1}\right)\right] \cup\left[f\left(A_{1}\right) \backslash B_{2}\right] \cup \cdots .
\end{aligned}
$$

Thus all that remains to be checked is that, for all n :

$$
f\left[A_{n} \backslash g\left(B_{n}\right)\right]=f\left(A_{n}\right) \backslash B_{n+1}
$$

and

$$
g\left[B_{n} \backslash f\left(A_{n}\right)\right]=g\left(B_{n}\right) \backslash A_{n+1}
$$

For any given n we have (since f and g are $1-1$):

$$
f\left[A_{n} \backslash g\left(B_{n}\right)\right]=f\left(A_{n}\right) \backslash f\left(g\left(A_{n}\right)\right)=f\left(A_{n}\right) \backslash B_{n+1}
$$

and

$$
g\left[B_{n} \backslash f\left(A_{n}\right)\right]=g\left(B_{n}\right) \backslash g\left(f\left(B_{n}\right)\right)=g\left(B_{n}\right) \backslash A_{n+1}
$$

Thus we can construct the bijection $\zeta: A \rightarrow B$ by:

$$
\zeta(x)=\left\{\begin{aligned}
f(x), & x \in A_{\infty} \text { or } x \in A_{n} \backslash g\left(B_{n}\right) \text { for some } n, \\
g^{-1}(x) & x \notin A_{\infty} \text { and } x \in g\left(B_{n}\right) \backslash A_{n+1} \text { for some } n .
\end{aligned}\right.
$$

